

FIBERGLASS COMPOSITE

SIA ''COMPOR" LLC, SALASPILS, LATVIA

⊗ +371 27822444, +371 29417038
☑ info@compor.lv
⊕ www.compor.lv

TABLE OF CONTENTS

Technical Certificate	3
Profiles	4
Pultrusion	8
Properties of Materials	9
Window Installation System	10
Solar Cell Structures	11
Cable Channels and Consoles	12
Fish Farming, Industrial Farming	13
Bridge Structures	14
Noise Barrier	15
Hangar Structures	16
Foundation System	17
Modular Houses	18
References	19

Application

Profiles made of fiberglass composite material, which are produced by pultrusion process, are used in various constructions (stairs, covers, squares, overpasses, technical buildings energy structures, etc.)

Material Properties

- Four times lighter than metal
- Does not corrode
- Durable in aggressive environments
- Not exposed to UV radiation
- Long service life
- · Dielectric with antistatic properties
- Easy to install

Characteristics	Compliance with	Notes
Chemical resistance	ISO 175, 4892	-
UV resistance	EN ISO 4892-3:2006	-
Mechanical strength	LVS EN ISO 527	Tensile strength limit 205.7-488.4 MPa Tensile strength limit (CW) 51.6 MPa Elastic modulus 18.5-30.1 GPa
Fire resistance and reaction to fire	LVS 263-2000 EN 13501	B s1 d0 un C s2 d0
Density	-	1.66 – 1.93
Glass amount in the mass	-	65-75%
Resin amount in the mass	-	25-35%
Electrical Properties	-	-
Electrical resistance (longitudinal LW)	IEC 60234	Up to 1.58 kV/mm
Electrical resistance (perpendicular CW)	IEC 60234	Up to 7.9 kV/mm
Resistance circuit (indicates the measurement value in the transverse direction)	-	120 seconds
Dielectric constant 60 Hz (perpendicular)	-	5.2
Shelf Life	-	Unlimited

Complies with EN 13706 and LVN UTN 0103 90 490-01-2016 Technical Regulations

FIBERGLASS COMPOSITE PROFILES

Angle	Pr	Profile Size, mm			Area,	Moment	Elastic Modulus.	Tensile	Bending
Angle	Height	Width	Thickness	Weight, kg/m	mm ²	of Inertia,	GPa	Strength, MPa (B- base)	Strength, MPa
-	h - mm	b - mm	t - mm			mm⁴	(B-base)		(B-base)
JL t	25	25	3.2	0.27	143.70	8,552	19.0	280.0	250.0
t =t	40	40	3.2	0.41	236.50	36,503	19.0	285.0	254.0
	51	51	3.2	0.51	305.20	77,229	19.0	288.0	259.0
	51	51	6.4	0.96	594.10	140,341	21.8	348.4	288.8
$h \rightarrow + + - x$	60	60	4	0.81	456.40	159,903	26.0	289.0	263.0
	76	76	6.4	1.67	916.70	508,159	21.8	348.0	289.0
	76	76	9.5	2.43	1,345.90	714,920	26.1	488.4	414.3
г _h ¬	120	30	3,2	0,78	459,20	676162	19,0	285,0	254,0

	Profile Size, mm			Weight,	Area,	Moment	Elastic Modulus,	Tensile	Bending
II profile Poom	Height	Width	Thickness	kg/m	mm ²	of Inertia.	GPa	Strength, MPa	Strength, MPa (B-
U-profile Beam	h - mm	b - mm	t - mm			mm⁴	(B-base)	(B-base)	base)
	75	25	5	0.97	547.90	38,5768	27.00	350	310
b →	100	40	5	1.41	822.90	1,142,953	27.00	350	310
	150	50	4	1.68	948.50	2,979,981	26.00	289.3	263.2
	150	50	6	2.46	1,392.30	4,233,805	23.20	430	479
hX	200	60	8	4.30	2,377.30	12,480,54 1	25.00	430	479
	200	80	8	4,72	2697,30	15431368	25,00	430	479

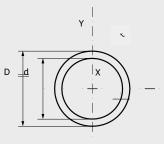
Double Beam

	Profile Size,	ofile Size, mm		Area,	Moment of	Elastic Modulus.	Tensile Strength,	Bending Strength,
Heigh	t Width	Thickness	Weight, kg/m		Inertia, mm⁴	GPa	MPa (B-	MPa (B-
h - m	m b-mm	t - mm				(B-base)	base)	base)
102	51	6.4	2.19	1,210.80	1,836,461	23.20	429.2	478.3
150	150	10	7.83	4,369.70	16,810,802	30.10	320	305
200	200	10	10.3	5,870.50	41,511,065	30.10	320	305

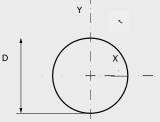
Corrugated Tube

h

D d


x___

Pro	Profile Size, mm			Area,	Moment of	Elastic Modulus,	Tensile Strength,	Bending Strength,	
Outer Diameter			kg/m mm²		Inertia, mm⁴	GPa (B-base)	MPa (B- base)	MPa (B- base)	
D - mm	d - mm	t - mm							
34	25	4.5	0.64	365.00	39,641	19.0	288.0	259.0	


FIBERGLASS COMPOSITE PROFILES

Round Pipe

Pro	file Size, m	m	Weight,	Area,	Moment	Elastic Modulus,	Tensile Strength,	Bending Strength,	
Outer Diameter	Inner Diameter	Thickness	kg/m	mm ²	of Inertia, mm⁴	GPa (B-base)	MPa (B- base)	MPa (B- base)	
D - mm	d - mm	t - mm							
31	25	3	0.47	257.20	2,4845	19.0	288.0	259.0	
38	32	3	0.62	290.10	4,4607	19.0	288.0	259.0	

Concrete Interconnection Dowels

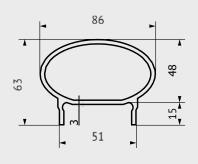
15	Diameter	Area, mm²	Weight, kg/m
	20	314	0.59
	25	491	0.92
	30	707	1.32
	50	101	1.52

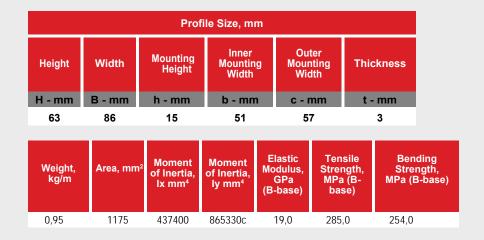
	Profile Size, mm			Weight,	Area,	Moment	Elastic	Tensile	Bending
Square Tube	Height	Width	Thickness	kg/m	mm ²	of Inertia.	Modulus, GPa	Strength, MPa (B-base)	Strength, MPa (B-
equale rabe	h - mm	h - mm	t - mm			mm⁴́	(B-base)		base)
	25	25	3.2	0.52	274.10	22,480	19.0	288.0	259.0
h Y	37	37	2.8	0.66	377.90	74,376	18.50	275	250
 	44	44	2.8	0.79	447.00	123,262	18.80	275	250
	44	44	6	1.57	894.20	214,853	23.20	429.2	478.3
h K	51	51	3.2	1.17	592.20	221,782	19.0	288.0	259.0
	51	51	6.4	2.03	1,115.50	371,141	23.20	429.2	478.3
	60	60	4.5	1.79	990.50	508,813	26.00	289.3	263.2
	101	101	3.8	2.61	1507.10	2411802	21.30	331.3	205.7

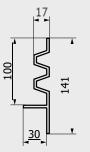
Lattice

Deck

Possible Grating Heights, mm	30	38	50
Possible Cell Sizes. mm: 19 x 19	2020		


Plate		Profile Size, mm		Weisché		Moment	Elastic	Tensile	Bending
		Width	Thickness	Weight, Thickness kg/m	Area, mm²	of Inertia, mm⁴	GPa	Strength, MPa (B-	Strength, MPa (B-
400		B - mm	t - mm				(B-base)	base)	base)
-		400	10	5.44	4,000.0	53,333,33 3	30.1	320.0	305.0


5


FIBERGLASS COMPOSITE PROFILES

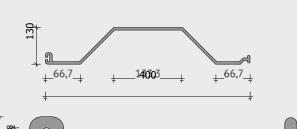
Handle

Lower Guard Rail

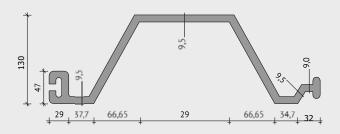
HeightWidthMounting HeightThicknessH - mmB - mmh - mmt - mm14030413	Profile Size, mm							
	Heig	ht	Width		ounting Heigl	^{nt} Thick	ness	
140 30 41 3	H - n	ım	B - mm		h - mm	t - m	ım	
	140)	30	41		3		
Weight, Area, mm ² of Inertia, of Inertia, Modulus, Strength, Streng kg/m Iv mm ⁴ GPa MPa (B- MPa (Area, mm²	of Inertia,	of Inertia,	Modulus, GPa	Strength, MPa (B-	Bending Strength, MPa (B- base)	
1.03 796.94 1,190,900 38,721 19.0 285.0 254.0	1.03	796.94	1,190,900	38,721	19.0	285.0	254.0	

Solid Deck

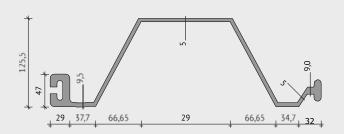
Pro	Profile Size, mm				Moment	Moment Moment		Tensile	Bending
Height	Width	Thickness	kg/m	Area,mm-	^{ea,mm²} of Inertia, of Inert Ix mm⁴ Iy mm		Modulus, GPa	Strength, MPa (B-	Strength, MPa (B-base)
B - mm	h - mm	t - mm				-	(B-bāze)	base)	
509 500*	38	Surface – 6 Legs – 4	8.0	4,770.3	855,250	109,520,000	18.7	260	241
* • •									


* Operating Width

6



Corrugated Walls


ттт							
Thickness, mm	Area	Perimeter	Centre	of Mass	Tensile Strength	Bending Modulus	Impact Resistance
_							at T 20°C – 80 kJ/m
5	3,871	1100	X: 20.00	Y: 5.95	488.4 MPa	26.1 GPa	at T 0°C – 110 kJ/m
Thickness, mm	Area	Perimeter	Centre	of Mass	Tensile Strength	Bending Modulus	Impact Resistance
							at T20°C – 287 kJ/m
9.5	6,126	2,750	X: 50.02	Y: 5.92	488.4 MPa	26.1 GPa	at T 0°C – 313 kJ/m
Moment of Inertia (1 m)							
Wx = 3,468.62/(0.9+5.92) = 508.6 cm ³							
Wy = 103,738.04/50.02 = 2,073.9 cm ³							

Thickness, mm	Area, mm²	Moment of Inertia, Ix mm⁴	Moment of Inertia, ly mm⁴
9.5	6,126	13,169,00 0	97,369,000

Y

Х

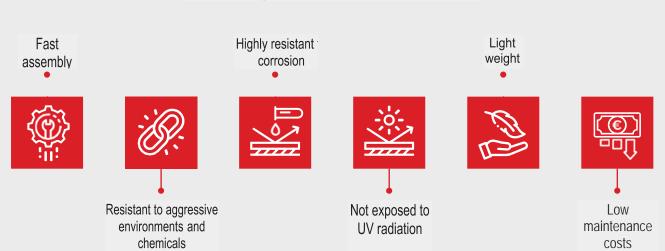
Thickness, mm	Area, mm²	Moment of Inertia, Ix mm⁴	Moment of Inertia, ly mm⁴
5	3,870.5	7,506,400	71,316,000

7

How it Works

Pultrusion is a continuous technological process when completely formed fiberglass composite profiles with the initially set configuration are made by pulling glass materials impregnated with thermosetting resins through a heated filler casting mould.

A controllable thermosetting resin polymerisation process is provided in the filler. The end products contain 45 to 75 percent fiberglass filler.

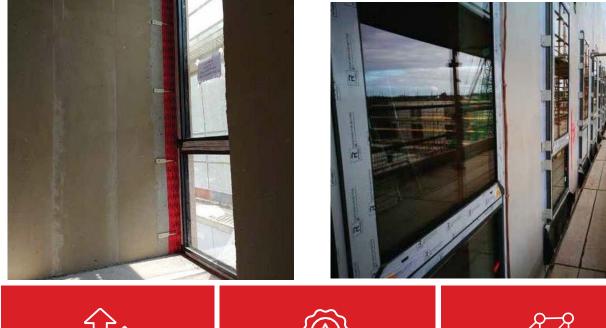

The finished profile does not require additional processing. The length of the product is not limited and is usually determined by the customer's needs and transport options.

Process Benefits

This process provides maximum flexibility in profile design selection. The composite can be assigned certain strength parameters (for example: fire resistance, various physical and mechanical properties, dielectric properties and others). The colour of the profile is uniform along the entire length of the cross-section. Colour is selected according to the RAL Catalogue.

75% lighter than metal!

FIBERGLASS COMPOSITE PROPERTIES OF MATERIALS


Properties	Fiberglass Composite	PVC	Steel	Aluminum
Density, kg/m	1.6-2.0	1.4	7.8	2.7
Destructive Compressive (Tensile) Stress, MPa	220	41-48	235-480	180-210
Destructive Bending Stress, MPa	220	80-110	400	275
Elastic Modulus, GPa	21	2.8	210	70
Coefficient of Linear Expansion, x10°C	8	57-75	11-14	22
Thermal Conductivity Coefficient, Vt/м*Κ	0.25-0.33	0.3	50	230
Corrosion Resistance	Very good	Good	Poor	Average

FIBERGLASS COMPOSITE WINDOW INSTALLATION SYSTEM

The installation system ensures the exact placement of windows and doorways, and also the acceptance of all permanent and variable loads.

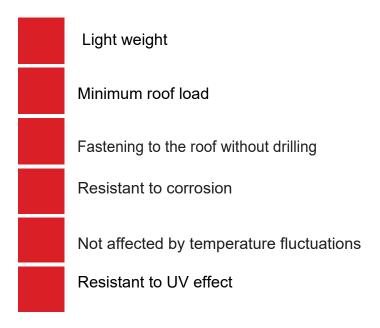
The system is adjustable in three dimensions, easily compensating for structural installation tolerances. Mounting bracket size: up to 150 mm, which can be positioned according to the optimal isothermal profile.

An advantageous solution

- Easily adjustable in three dimensions
- Easily compensated installation tolerances
- Simple, quick and safe installation even of large (and heavy) windows and doors
- Individually adjustable sizes
- Increased load carrying capacity without using expensive additional support elements
- A durable structure eliminating installation problems

The highest quality

- Calculated load carrying capacity and safety statics (see data sheet)
- Predictably safe window installation
- Suitable for all workloads
- A comprehensive system from one manufacturer
- Easy and safe installation according to RAL Regulations / ift Rosenheim (Germany)


Structural physics

- Low temperature resistant material
- The sealing process is not delayed
- Sufficient space for insulation and sealing material

FIBERGLASS COMPOSITE SOLAR CELL STRUCTURES

We offer solutions using environmentally friendly materials and allowing the use of solar panels in combination with various types of structures.

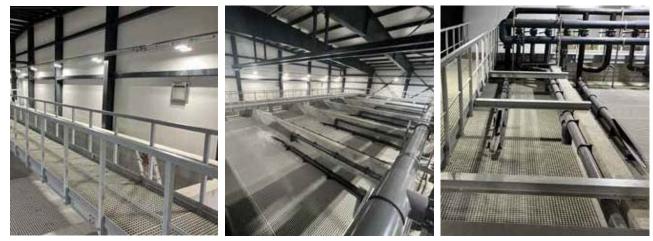
FIBERGLASS COMPOSITE CABLE CHANNELS AND CONSOLES

Console

FIBERGLASS COMPOSITE FISH FARMING, INDUSTRIAL FARMING

We offer service platforms and stairs, in any configurations, according to the project.

Light weight


Resistance to moisture, UV and aggressive environment effects

Resistant to corrosion

Environmentally-friendly materials

Fast installation

FIBERGLASS COMPOSITE BRIDGE STRUCTURES

We offer construction of pedestrian bridges, suspension bridges, footbridges and stairs. These structures are characterised by a solid deck and antislip coating.

Light weight

Resistant to corrosion

Resistance to moisture, UV and aggressive environment effects

Wear-resistant anti-slip coating (corundum base)

 الات Fast installation

Low maintenance costs

Distance between supports, m	0.50	0.75	1.00	1.25	1.50	1.75	2.00
Max. load kg/m2, Deflection L/150	15 950	4 730	2 000	1 020	590	370	250
Max. load kg/m2, Deflection L/200	11 960	3 535	1 500	765	440	275	185
Max. load kg/m2, Deflection L/400	5 960	1 770	750	380	220	135	90

FIBERGLASS COMPOSITE NOISE BARRIER

	pFast installation
	Light weight
	Thermally and electric
	conductive
	Resistant to corrosion
к л 2 У	Impact resistant
	Dimensional stability

Low maintenance costs

Price from 50 EUR/m which may change depending on the technical details of the project

Structures	Rw – Insulation Index	αs – Sound Absorption Coefficient
1. Screen made of fiberglass composite material	dB	-
1.1. Thickness 100 mm	37	0.8
1.2. Thickness 150 mm	38	0.8
2. Impact resistant glass (thickness 13 mm)	37	0.2
3. Screen made of fiberglass composite material + impact resistant glass	-	-
3.1. 100 mm +13.5 mm	37	0.2 - 0.8
3.2. 150 mm +13.5 mm	37-39	0.2 - 0.8
4. Fiberglass composite pole	-	-
4.1. I 150 x 150 x 10 mm	39	0.8
4.2. I 200 x 200 x 10 mm	39	0.8

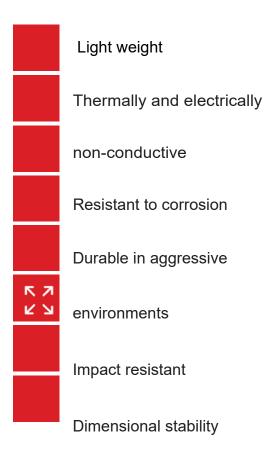
(()

AIR SOUND DAMPING DLR(dB) – up to 39 SOUND ABSORPTION DIa(dB) – up to 13

FIBERGLASS COMPOSITE HANGAR STRUCTURES

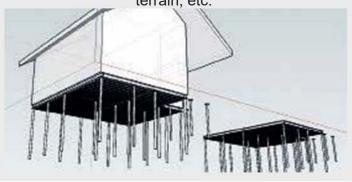
We offer wide possibilities in the development of hangar structures, which are characterised by corrosion resistance, long service life, easy installation and low maintenance costs.

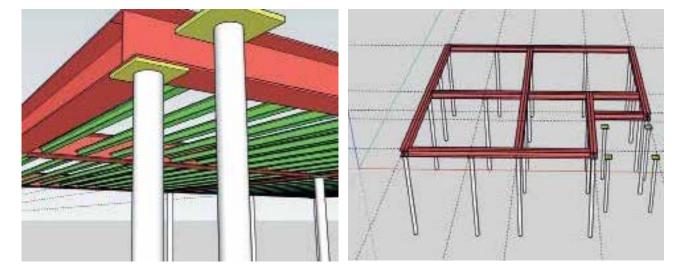
m



Span:	up to 16 m
Standard pole spacing:	X m
Height:	up to 9 m

FIBERGLASS COMPOSITE FOUNDATION SYSTEMS




Long service life

Fast installation all year round

A house foundation system that allows the construction of buildings in difficult conditions: soft soil, clay, mountainous terrain, etc.

Fiberglass composite can be combined with a concrete slab used as a floor foundation for a house.

We offer modular houses made of composite materials. Supporting structure – fiberglass composite profiles (wide flange beams, U-beams, squares). Panels (thickness of 120 and 170 mm) are highly efficient, energy-efficient structural insulated panels based on natural magnesite, filled with a special filling, the panels provide an excellent coefficient of thermal insulation and high resistance to fire, fungi and pest infestation.

This system is used for the construction of residential and commercial building structures.

These buildings are more energy efficient, use fewer natural resources and generate less waste, energy consumption and pollution during the construction process and throughout the entire life of the building

Carnikava Bridge

Ship service bridge, each section of 24 m

Footbridge (frame, grids), 72 m

Service bridge in the port

Pedestrian bridge (pedestrian section and railing)

Floating modular house

Construction of the Dendrārijs railway station

Traverses

Pedestrian crossing with non-slip coating

Ramp structures

Service platforms in a fish farm

Wastewater treatment plant stairs and platform

Support beam in roof structures

Construction of a hangar structure

Hangar - warehouse structure

Technical bridge structure

Roof guardrail

Noise barriers

FIBERGLASS COMPOSITE REFERENCES

Vertical stairs

Liepāja Bridge, staircase structure

Balticovo, cable rack system

Solar cell structure, meadow park

Terrace structure

Lamellas for facades, Rimi Shopping Centre

COMPOR

SIA ''COMPOR" LLC, SALASPILS, LATVIA

+371 27822444, +371 29417038 info@compor.lv www.compor.lv